Head CT Scan Interpretation: A Five-Step Approach to Seeing Inside the Head Lawrence B. Stack, MD

Five Step Approach

- 1. Adequate study
- 2. Bone windows
- 3. Ventricles
- 4. Quadrigeminal cistern
- 5. Parenchyma

Step 1: Assuring an Adequate Study

- Correct patient/scan
- Square in the scanner
- Contrast or not
- Correct slice thickness
- Correct number of slices

Step 2: Bone Window interpretation

- Soft tissue swelling or lacerations
- Fractures
- Pneumocephalus
- Sinuses
- Scout film

Step 3: Assessment of the Ventricles

- Size
- Shape
- Spatial relationship

Symmetry

Blood

Step 3: Assessment of the Ventricles

- Lateral ventricles frontal horns
- Lateral ventricles occipital horns
- Lateral ventricles temporal horns
- Third ventricle
- Fourth ventricle

Step 4: Quadrigeminal cistern

- Location
- Identification
- Significance
- Effacement
- Blood

Step 5: Parenchyma

- Midline shift
- Symmetry
- Blood
- Edema
- Ischemia
- Tumor

Step 1: Assuring an adequate study

- Correct patient/scan
 - Make correct decisions on correct information
 - o Looking at the wrong scan happens when you are busy or complacent
 - o Every slice should have demographic information
- Square in the scanner
 - o Symmetry is important in the evaluation of ventricles and parenchyma
 - o A head tilted in the scanner may cause structures to appear asymmetric
 - Ocular lenses are 10mm in size and should be in the same cut
- Contrast or not
 - Contrast does not cross intact blood brain barrier
 - o Appears white (radiodense)...so does acute bleeding
 - o Rarely given in Emergency Department patients
 - o If administered, the type and amount will be indicated on every slice
- Correct slice thickness

- o The thinner the slice, the less artifact, particularly in small spaces
- o No more than 5mm thick for entire scan in children
- No more than 5mm thick in the posterior fossa in adults
- o No more than 10mm thick above the tentorium in adults
- Correct number of slides
 - o Foramen magnum to apex of skull
 - o Most superior cut should be only bone
 - Apical subdural hematoma

Step 2: Bone Window interpretation

- Important in trauma patients
- Performed often in 2.5mm cuts
- Soft tissue swelling or lacerations
 - May see underlying brain injury on corresponding parenchymal windows
 - May see underlying skull fracture
- Fractures
 - o Linear
 - Depressed
 - Diastatic
 - o Basilar
 - Comminuted
 - o Open
 - o May see underlying brain injury on corresponding parenchymal windows
- Pneumocephalus
 - o Best seen on bone windows
 - Air appears black
- Sinuses
 - o Evaluate paranasal sinuses for air-fluid levels or masses
 - Evaluate the mastoid air cells for fluid
 - o A "free" sinus series
- Scout film
 - o Used to align the CT gantry hard palate is reference structure at VUMC
 - Look for linear fractures
 - Look for foreign bodies
 - Look for post-surgical defects

Step 3: Assessment of the Ventricles

- Size
 - o Focal enlargement due to encephalomalacia
 - o Diffuse enlargement
 - Hydrocephalus effacement of sulci
 - Atrophy prominence of gyri and sulci
 - o Effacement (compression) may be due to edema, bleeding, or mass
- Shape
 - o May be affected by edema, bleeding, mass or increased ICP
- Spatial relationship

- o Should be in correct relationship to the midline
- o May be affected by edema, bleeding, mass, or increased ICP
- Symmetry
 - Affected by head position in scanner
 - Affected by edema, bleeding, mass, increased ICP
- Blood
 - Most often from rupture of subependymal veins
 - o May be from reflux of aneurysmal subarachnoid bleeding
 - o May be from extension of an intraparenchymal bleed
 - o Intraventricular blood increases risk of developing hydrocephalus
 - o Do not confuse choroid plexus with blood

Step 3: Assessment of the Ventricles

CSF spaces within the brain

- Lateral ventricles *frontal horns*
 - Located above tentorium
 - o Shaped like backward parentheses ")("
- Lateral ventricles *occipital horns*
 - Located above tentorium
 - Contains choroid plexus
 - o Dependent position when patient is supine may collect blood
- Lateral ventricles *temporal horns*
 - Located within the temporal lobes
 - o Narrow "L-shaped" structures
 - Sensitive for detecting hydrocephalus
- Third ventricle
 - o Located at the level of the pineal gland
 - o Single, midline, slit-like structure
 - o Makes and exclamation point "!" with the pineal gland
 - o Effacement is sensitive finding for early edema, or small bleed
- Fourth ventricle
 - o Located below the level of the tentorium in the posterior fossa
 - o Oval or "pith-helmet" shaped
 - Infrequently has blood
 - o Infrequently is effaced or displaced from midline

Step 4: Quadrigeminal cistern

- Location
 - o Located within 2 cuts superiorly of the dorsum sella
- Identification
 - o Find dorsum sella and count superiorly 2 cuts
 - o Quadrigeminal cistern should be found within 2 cuts
 - o If not seen, suspect effacement
- Significance
 - Located at the level of the tentorium
 - Effacement suggests herniation syndrome

- Sensitive to clinical presentation
- Located in proximity of the Circle of Willis
 - 80% of spontaneous SAH are due to aneurysm
 - Aneurysmal hemorrhage will fill cistern with blood
- Effacement
 - o May be effaced by mass, increased ICP, blood, edema
- Blood
 - Sudden onset of headache with blood in the quadrigeminal cistern suggests aneurysmal bleeding
 - Blood in the quadrigeminal cistern and subsequently other ventricles may result in hydrocephalus

Step 5: Parenchyma

- Midline shift
 - o May occur from edema, mass, blood, intracranial pressure, infarction
 - Midline shift should prompt careful examination for serious disease or injury
 - Midline structures
 - Falx cerebri
 - Septum pellucidum
 - Third ventricle
 - Pineal gland
 - Fourth Ventricle
- Symmetry
 - Correspondence in size, form, and arrangement of parts on opposite sides of a plane
 - o Normal hemispheres should be relatively symmetric
 - Asymmetry should prompt careful examination for serious disease or injury
- Blood
 - Extra-axial: Does not arise from the brain itself
 - Epidural hematoma
 - Typically due to arterial injury
 - Middle meningeal artery
 - Biconvex or "lens" shaped
 - Usually acute or hyperdense (white) in appearance
 - Will cross midline
 - Will not cross suture lines
 - Subdural hematoma
 - Typically due to injury of bridging veins
 - May be spontaneous in elderly
 - Crescent shaped
 - Will cross suture lines
 - Will not cross mid line except in the posterior fossa
 - Radiographic density depends on age

- o Acute (0-24 hours) white
- Subacute (4-6 days) gray
- o Chronic (11-14 days) black
- Location
 - o Typically along convexities
 - May be trans-falcine
 - May be trans-tentorial
- Subarachnoid hemorrhage
 - Spontaneous
 - o Aneurysmal quadrigeminal cistern
 - Sylvian fissure
 - o "Crab of death"
 - AV malformation
 - Traumatic
 - o Often seen adjacent to SDH or EDH
 - Along convexities
 - o Interdigitates into sulci
- Intraparenchymal
 - Contusion
 - Ill-defined areas of petechial hemorrhage
 - Superficial cortex
 - Underlying white-matter is spared
 - May be coup or contracoup
 - Seen in frontal and temporal areas
 - Temporal lobe contusions may cause herniation
 - Shear hemorrhage
 - Seen at the gray-white matter interface
 - Due to rotational acceleration-deceleration injuries
 - Sign of axonal injury
 - Frontal and temporal lobes
 - Usually a few millimeters to a centimeter in size
 - Parenchymal bleed
 - Rupture of deep perforating vessels
 - Hypertension in area of basal ganglia
 - Tumor
 - Infarction
 - Coagulopathy
 - Illicit substance related
- Edema
 - Localized
 - Vasogenic
 - Ill-defined hypodensity of white matter
 - Spares gray matter
 - Disruption of blood brain barrier
 - Surrounds tumors

- Surrounds infection
- Surrounds late-stage infarctions
- Surrounds bleeds
- Cytotoxic
 - Occurs within minutes after onset of ischemia
 - Due to disruption of cellular function
 - Cellular edema
- o Diffuse
 - Loss of gray-white matter differentiation
 - Effacement of basilar cisterns
 - Loss of prominence of gyri
- Ischemia
 - o Seen on CT in only 20-30% of patients
 - o Earliest findings at 6-12 hours after insult
 - o CT done to exclude ICB
 - o MRI may see findings with 2 hours after insult
 - o Findings
 - Hyperdense artery
 - Insular ribbon
 - Between Sylvian fissure and
 - Lentiform nucleus
 - Loss of in insular stripe due to cellular edema
 - Loss of gray-white differentiation
- Tumor
 - o Ill-defined low-density appearance
 - o Surrounding edema
 - o Better defined by MRI