Key Facts in the Head Injury Slides

CPP = MAP – ICP
CBF = 50-55ml/100 grams of brain/minute

Slide 1 (Battle’s sign)
- 500,000 brain injuries/year in US
- 80% are mild
- 10% are moderate
- 10% are severe
- 100,000 have debilitating injury

Slide 2 (Objectives) – quickly cover
- Intracranial physiology – non-expansible space
- Prevent secondary brain injury – primary focus of ATLS in suspected brain-injured patient (maintain oxygenation and normal blood pressure)
- Focused neuro examination – Glasgow Coma Scale and Pupillary response interpretation
- Stabilize for definitive care

Slide 3 (Key questions) – more detail here –correlate with objectives
- Unique features – non-expansible space that can compensate to about 150 ml
- What is a focused neuro examination? (GCS and pupil response)
- Optimal management – or “How do I prevent secondary brain injury?”
- Diagnose brain death – First step toward Organ donation

Slide 4 (Anatomy and Physiology of the brain and how is it affected by brain injury?)
- Rigid skull filled with blood, brain, CSF
- Cerebral blood flow autoregulation (50-55 ml/100grams/brain/minute)
 - Controlled by vascular vasodilation/vasoconstriction
 - Necessary to maintain flow over a wide range of blood pressures
 - Arterial CO2 levels also affect vasodilation/vasoconstriction with low PaCO2 causing vasoconstriction
 - Cushing response to maintain CPP is another compensatory mechanism
- Injury affects autoregulatory mechanisms
 - Initial compensatory mechanisms to the intracranial hematoma mass effect include CSF absorption and venous constriction
 - Mass effect of intracranial hematoma interferes with brain vasculature to appropriately dilate or constrict
- Mass effect
 - Compensatory mechanism begin to fail at approximately 100-150 ml of intracranial hematoma volume
 - Failure of autoregulatory mechanisms can result in reduced CBF to the point of ischemic brain injury (secondary brain injury)
Hypotension and hypoxia will exacerbate the deleterious effects (brain injury/infarction) of reduced CBF all ready due to intracranial hematoma

Slide 5 (Monro-Kellie Doctrine)
- Total volume of intracranial contents must remain constant
- Image 1 – normal state
- Image 2 – Intracerebral hematoma -> compensatory mechanism
 - Absorption of CSF
 - Decreased venous volume
 - No increase in Intracranial Pressure (ICP), yet
 - Remember Cerebral Perfusion Pressure CPP= MAP – ICP
- Image 3 – Enlarging hematoma overtakes compensatory mechanism at 150ml
 - ICP rapidly increases

Slide 6 (Volume-Intracranial Pressure Curve)
- Brain-Blood-CSF autoregulatory mechanisms can compensate until a “critical mass” (approximately 100-150ml) is reached
- Intracranial pressure begins to rise rapidly after these autoregulatory mechanisms are overtaken

Slide 7 (Intracranial pressure)
- Ask “What is normal ICP?” ->10mmHg
- How does Increased ICP affect patterns of brain injury?
 - Sustained and unresponsive to treatment, ICP >20mmHg results in poor outcome
- >40mmHg severe ->herniation

Slide 8 (Cerebral Perfusion Pressure) CPP = MBP – ICP
- Increasing ICP due to increased volume due to expanding hematoma follows the Monro-Kellie Doctrine
- Cushing response (increasing blood pressure is a compensatory effort to maintain CPP with rising ICP
- If hypotension ensues (bottom row) CPP is reduced and brain injury is worsened

Slide 9 (Autoregulation)
- Review the autoregulatory mechanisms of the brain
 - Vasodilation/vasoconstriction
 - CSF absorption
 - Venous constriction
 - Cushing response
- If normal, autoregulatory mechanisms can maintain adequate CBF within a blood pressure range of 50-160mmHg
- Moderate to severe brain injury ->autoregulatory mechanisms are impaired
- Brain injury more sensitive to hypoxia and hypotension (secondary brain injury)
- Treatment of brain injury focuses on prevention of secondary brain injury which is maintaining blood pressure and oxygenation (ABCs)
Slide 10 (Classification of Brain Injury)
• By mechanism
 o Blunt
 ▪ High velocity – MVC, Fall
 ▪ Low velocity – assault, Fall
 o Penetrating
 ▪ Trans-falcine GSW -> fatal

Slide 11 (Classifications of Brain Injury)
• By skull morphology: Skull fractures
 o Vault
 o Base
• Linear skull fractures increase likelihood of hematoma by 400x in awake patient and 20x in comatose patient
• Open fractures at risk for meningitis (see dural leak)
• Basilar skull fractures are at risk for CSF leak and CN 7 and 8 palsy
 o Battle’s sign
 o Raccoon eyes
 o CSF rhinorrhea/otorrhea

Slide 12 (Classification of Brain Injury) Brief introduction – Don’t dwell on this slide
• By Brain Morphology
 • Focal
 o Epidural
 o Supdural
 o Intracerebral
 • Diffuse
 o Concussion
 o Contusion
 o Ischemic injury – Hypoxic injury
 o Generalized Edema

Slide 13 (Diffuse brain injury)
• Range from concussion to severe ischemic insult
 o Concussion (symptoms)
 ▪ Transient LOC
 ▪ Retrograes or antgrade amnesia
 ▪ Nausea, vomiting, headache
 ▪ Post-concussive syndrome – difficulty concentrating
 ▪ CT scan is normal – should be repeated for worsening symptoms or clinical change
 o Diffuse brain injury (causes)
 ▪ Hypoxia
 ▪ Hypotension
• CT reveals generalized edema, blurring of gray-white interface, loss of distinction of gyri and suli

Slide 14 (Epidural Hematoma) **What are the clinical and CT features of an Epidural Hematoma?**
- Skull fracture
- Middle meningeal artery injury
- Actual minimal brain trauma (concussion)
- Can be rapidly fatal due to herniation
- Early evacuation can result in complete recovery

Slide 15 (Epidural Hematoma) **CT scan findings**
- Biconvex (lenticular) in shape
- Dura adheres to the calvarium
- Uncal herniation when the basilar cistern is effaced

Slide 16 (Subdural Hematoma) **What are the clinical and CT features of a Subdural Hematoma?**
- Bridging vein injury
- Brain laceration
- Outcome determined by underlying brain injury
- Evacuation decision determined by size of mid-line shift
- Follows skull convexity
- Density determines age

Slide 17 (Subdural Hematoma) **CT scan findings**
- Crescent shaped
- Follows skull convexity
- Density determines age
- Covers entire hemispheric surface

Slide 18 (Contusion / Hematoma) **What are the clinical and CT features of a Contusion / Hematoma?**
- Occur in up to 30% of severe brain injuries
- Coup injury (direct injury)
- Contracoup injury (bounce)
- Contusions may progress in size
- Usually occur in the frontal or temporal lobes

Slide 19 (Contusion / Hematoma) **CT scan**
- Large frontal contusion
- Mid-line shift
- Frontal contusion appears to be contracoup (occipital soft tissue swelling)

Slide 20 (Mild Brain Injury) **What GCS score might constitute a “mild brain injury?”**
- GCS as a may be a method to stratify brain injury
80% of brain injured patients
At discharge, must be awake, understand instructions, companion for 24 hours

Slide 21 (Moderate Brain Injury) **What GCS score might constitute a “moderate brain injury?”**
- CT scan for all patients with GCS 9-13
- Represents 10% of patients with brain injury
- Admit/Observed
- 10-20% of these patients deteriorate

Slide 22 (Severe Brain Injury) **What GCS score might constitute a “severe brain injury?”**
- GCS of 3-8
- ABCs critical
- Cannot protect their airway
- Secondary brain injury from hypotension increases mortality from 27% to 60%
- Add hypoxia to hypotension in the severely brain injured patient = 75% fatal
- If hypotensive, must find cause (CT, FAST, DPL, CXR)
- Repeat head CT scans as needed

Slide 23 (Priorities) **How do I optimally manage the brain injured patient?**
- ABCDE
- Minimize secondary brain injury
 - Oxygen
 - Maintain normal blood pressure

Slide 24 (Focused Neurological Exam?) **What is a focused neurological examination?**
- GCS
- Pupillary Response
- Lateralizing signs
 - Pupil dilation
- Call neurosurgeon early

Slide 25 (Medical Management) **How do I medically manage the brain injured patient?**
- Focus on BP and oxygenation
- IVF
- Controlled ventilation
 - Avoid hyperventilation except in acute change in status
 - Hypocarbia may induce brain vasoconstriction and ischemia if prolonged

Slide 26 (Indications for CT Scan?) **What are the indications for obtaining a CT scan of the brain or when do I need to obtain one?**
- Bottom line: Obtain a CT in patients suspected of brain injury

Slide 27 (Medical Management)
- What are the indications for mannitol?
- Acute deterioration
 - Blown pupil
 - Acute hemiparesis
 - Becomes unconscious
- What is the dose of mannitol?
 - 1gm/kg over 5 min (bolus)
- What are the contraindications of mannitol?
 - Hypotension

Slide 28 (Medical Management: Other Drugs)
- **What other medications might be considered in the medical management of the brain injured patient?**
 - Phenytoin
 - Sedation – decreased ICP in the agitated patient
 - Paralytics – control the combative patient, to obtain diagnostic studies, complete resuscitation

Slide 29 (Surgical Management): Scalp injuries – **How do I manage scalp injuries?**
- May be a major site of blood loss in adults/especially children
- Damage control OK

Slide 30 (Surgical Management: Intracranial Mass lesion) **How do I surgically manage the patient with an intracranial mass lesion?**
- **Committee on Trauma** recommends no burr holes unless trained by and in consultation with a neurosurgeon
- Mannitol/hyperventilate
- Immediate neurosurgery consult

Slide 31 (**How do I diagnose brain death?**)
- Clinical findings?
- Ancillary Studies?
- Consider hypothermia or barbiturate coma